Science Friction (1)

Mersenne numbers, when they are primes, are routinely used to feed MonteCarlo random number generation. They have the form:

M_n := 2^{n}-1, \hspace{0.5cm} n \in \mathbb{N}.

Since not all of them are prime, we can use prime factorization of a sequence of big Mersenne numbers to benchmark our CPU.
The ingredients are fairly minimalistic:
all we need is a Linux bash shell (with the wonderful bench calculator bc), the java compiler (Linux: javac) and the java virtual machine (Linux: java). To factorize we could use for example the Pollard Rho method in this implementation.

import java.math.BigInteger;

class PollardRho {
    private final static BigInteger ZERO = new BigInteger("0");
    private final static BigInteger ONE  = new BigInteger("1");
    private final static BigInteger TWO  = new BigInteger("2");
    private final static SecureRandom random = new SecureRandom();

    public static BigInteger rho(BigInteger N) {
        BigInteger divisor;
        BigInteger c  = new BigInteger(N.bitLength(), random);
        BigInteger x  = new BigInteger(N.bitLength(), random);
        BigInteger xx = x;

        // check divisibility by 2
        if (N.mod(TWO).compareTo(ZERO) == 0) return TWO;

        do {
            x  =  x.multiply(x).mod(N).add(c).mod(N);
            xx = xx.multiply(xx).mod(N).add(c).mod(N);
            xx = xx.multiply(xx).mod(N).add(c).mod(N);
            divisor = x.subtract(xx).gcd(N);
        } while((divisor.compareTo(ONE)) == 0);

        return divisor;

    public static void factor(BigInteger N) {
        if (N.compareTo(ONE) == 0) return;
        if (N.isProbablePrime(20)) 
            { System.out.println(N); return; }
        BigInteger divisor = rho(N);

    public static void main(String[] args) {
        BigInteger N = new BigInteger(args[0]);

If processor time has to be accurately recorded, just add the “time” command in front of the java runtime, like this:

for n in `seq 101 2 201`; \
do echo "[Factoring Mersenne `echo 2^$n-1`]" ; \
time java PollardRho `echo 2^$n -1 |bc` ; \

The code snippet above loops all the odd numbers n \in \{101,103,\ldots,199,201\}, uses them as Mersenne exponent as M_n := 2^n-1 and prints prime factors. Check for example that for n=107 the Mersenne number is infact a Mersenne prime.

Categories: Computing

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: